United States Patent

US009158579B1

(12) 10) Patent No.: US 9,158,579 B1
Robles (45) Date of Patent: Oct. 13,2015
(54) SYSTEM HAVING OPERATION QUEUES 4,796,260 A 1/1989 Schilling et al.
CORRESPONDING TO OPERATION 33 gggg : f‘; iggg Z;mS;f a
,825, ershenson et al.
EXECUTION TIME 4,837,680 A 6/1989 Crockett et al.
. 4,847,842 A 7/1989 Schilling
(75) Inventor: David Morgan Robles, Alameda, CA 4,849,929 A 7/1989 Timsit
(as) 4,849,974 A 7/1989 Schilling et al.
4849976 A 7/1989 Schilling et al.
: . 4,870,643 A 9/1989 Bultman et al.
(73) Assignee: NetApp, Inc., Sunnyvale, CA (US) 4899342 A 3/1990 Potter of o
(*) Notice: Subject. to any disclaimer,. the term of this igggﬁgg ﬁ };}gg} Bﬁﬁgﬁi i ZE ﬂ
patent is extended or adjusted under 35 5,022,080 A 6/1991 Durst et al.
U.S.C. 154(b) by 1844 days. 5,077,736 A 12/1991 Dunphy, Jr. et al.
5,088,081 A 2/1992 Farr
(21) Appl. No.: 12/268,037 (Continued)
(22) Filed: Now. 10,2008 FOREIGN PATENT DOCUMENTS
(51) Int.ClL EP 1617330 A2 1/2006
GO6F 9/455 (2006.01)
GOG6F 9/46 (2006.01) OTHER PUBLICATIONS
GO6F 9/48 (2006.01) Bultman, David L., High Performance SCSI Using Parallel Drive
(52) US.CL Technology, In Proc. BUSCON Conf., pp. 40-44, Anaheim, CA, Feb.
CPC GO6F 9/4881 (2013.01); GO6F 9/4843 1988,
(2013.01) .
(58) Field of Classification Search (Continued)
None))
See application file for complete search history. Primary Examiner — Corey S Faherty
(74) Attorney, Agent, or Firm — Cesari and McKenna, LLP
(56) References Cited
57 ABSTRACT
U.S. PATENT DOCUMENTS A system and method for prioritized queues is provided. A
3,876,978 A 4/1975 Bossen et al. plurality of queues are organized to enable long-running
4,092,732 A 5/1978 Ouchi operations to be directed to a long running queue operation,
4,201,976 A 5/1980 Patel while faster operations are directed to a non-long running
3%22%%‘2‘ ﬁ lgﬁggg gi.lizl operation queue. When an operation request is received, a
4375100 A 2/1983 Tsuii et al. determination is made whether it is a long-running operation,
4:467:421 A 8/1984 White and, if so, the operation is placed in a long-running operation
4,517,663 A 5/1985 Imazeki et al. queue. When the processor core that is executing long-run-
4,667,326 A 5/1987 Young et al. ning operations is ready for the next operation, it removes an
3’?53’3%% ﬁ ?;}gg; Eﬁgneltuﬁ etal. operation from the long-running operation queue and pro-
4755978 A 7/1988 Takizawa et al. cesses the operation.
4761,785 A 8/1988 Clark et al.
4,775,978 A 10/1988 Hartness 17 Claims, 6 Drawing Sheets

PLAGE OPERATION IN
LONG RUNNING
OPERATION QUEVE

REMOVE OPERATION FROM
QUEUE AND PROCESS
OPERATION

E OPERATION IN ad

PLAC
NON-LONG RUNNING
OPERATION QUEUE

REMOVE OPERATION FROM |~ 5%

QUEUE AND PROCESS
OPERATION

PLAGE STATUS OF %0
OPERATION IN LONG
RUNNING STATUS QUEUE

RUNNING STATUS QUEUE

PLACE STATUS OF 656
OPERATION IN NON-LONG

REMOVE STATUS AND 835
REPORT TO INITIATOR

REMOVE STATUS AND 650
REPORT TO INITIATOR

L~

US 9,158,579 B1

Page 2
(56) References Cited 6,532,548 Bl 3/2003 Hughes
6,581,185 Bl 6/2003 Hughes
U.S. PATENT DOCUMENTS 6,598,086 Bl 7/2003 Bell et al.
6,654,889 B1 11/2003 Trimberger
5.101.492 A 3/1992 Schultz et al. 6,711,693 Bl 3/2004 Golden et al.
5128810 A 7/1992 Halford 6,854,071 B2 22005 Kingetal.
5,148,432 A 9/1992 Gordon et al. 6,920,154 Bl 7/2005 Achler
RE34.100 E 10/1992 Hartness 6,950,966 B2 9/2005 Chiquoine et al.
5,163:131 A 11/1992 Row et al. 6,983,353 B2 1/2006 Tamer et al.
5,166,936 A 11/1992 Ewert et al. 6,985,499 B2 1/2006 Elliot
5,179,704 A 1/1993 Jibbe et al. 6,993,701 B2 1/2006 Corbett et al.
5,200,999 A 4/1993 Matyas et al. 7,020,160 Bl 3/2006 Achler
5202979 A 4/1993 Hillis et al. 7,024,584 B2 4/2006 Boyd etal.
5,208,813 A 5/1993 Stallmo 7,055,057 B2 5/2006 Achiwa
5,210,860 A 5/1993 Pfeffer et al. 7,089,391 B2 8/2006 Geiger et al.
5,218,689 A 6/1993 Hotle 7,152,077 B2 12/2006 Veitch et al.
5,233,618 A 8/1993 Glider et al. 7,180,909 Bl 22007 Achler
5.235.601 A 8/1993 Stallmo et al. 7,203,732 B2 4/2007 McCabe et al.
5:237:658 A 8/1993 Walker et al. 7,246,203 B2 7/2007 Moat et al.
5257367 A 10/1993 Goodlander et al. 7,269,713 B2 9/2007 Anderson et al.
5.274.799 A 12/1993 Brant et al. 7,278,049 B2 10/2007 Bartfai et al.
5:305:326 A 4/1994 Solomon et al. 7,324,547 Bl 1/2008 Alfieri et al.
5,313,626 A 5/1994 Jones et al. 7,343,460 B2 3/2008 Poston
5319,710 A 6/1994 Atalla et al. 7,362,772 Bl 4/2008 Alfieri et al.
5,351,246 A 9/1994 Blaum et al. 7,380,081 B2 52008 Jietal.
5355453 A 10/1994 Row et al. RE40,405 E 6/2008 Schwartz et al.
5.386.524 A 1/1995 Lary et al. 7397,797 B2 7/2008 Alfieri et al.
5,398,283 A 3/1995 Virga 7,418,368 B2 8/2008 Kim et al.
5.410.667 A 4/1995 Belsan et al. 7,467,168 B2 12/2008 Kern et al.
5485579 A 1/1996 Hitz ef al. 7,467,265 Bl 12/2008 Tawri et al.
5.504.861 A 4/1996 Crockett et al. 7475207 B2 1/2009 Bromling et al.
5,537,567 A 7/1996 Galbraith et al. 7,529,885 B2 5/2009 Kimura et al.
5,579,475 A 11/1996 Blaum et al. 7,539,976 Bl 5/2009 Ousterhout et al.
5592618 A 1/1997 Micka et al. 7,546,469 B2 6/2009 Suzuki et al.
5:623:595 A 4/1997 Bailey 7,571,268 B2 8/2009 Kern et al.
5,657,440 A 8/1997 Micka et al. 7,581,064 Bl 8/2009 Zedlewski et al.
5,682,513 A 10/1997 Candelaria et al. 7,624,100 B2 11/2009 Testardi
5,778,206 A 7/1998 Pain etal. 7,720,801 B2 52010 Chen
5.802.366 A 9/1998 Row et al. 8,015,427 B2 9/2011 Miller et al.
5205788 A 0/1998 Johnson 8,196,147 Bl 6/2012 Srinivasan
5’812’753 A 9/1998 Chiariotti 8,621,184 Bl 12/2013 Radhakrishnan et al.
5815.693 A 0/1998 McDermott et al. 2002/0048364 Al 4/2002 Gligor et al.
5:819:292 A 10/1998 Hitz et al. 2002/0091914 Al 7/2002 Merchantetal. 712/219
5,852,664 A 12/1998 Iverson et al. 2003/0093623 Al 5/2003 Crook et al.
5,862,158 A 1/1999 Baylor et al. 2003/0204759 Al 10/2003 Singh
5.884.098 A 3/1999 Mason. Jr. 2005/0050115 Al 3/2005 Kekre
5918001 A 6/1999 Ueno of al. 2005/0154786 Al 7/2005 Shackelford
5031.918 A 8/1999 Row et al. 2006/0006918 Al 1/2006 Saint-Laurent
5041.972 A 8/1999 Hoese et al. 2006/0015507 A1 1/2006 Butterworth et al.
5063962 A 10/1999 Hitz ef al. 2006/0039465 Al 2/2006 Emerson et al.
5074544 A 10/1999 Jeffries et al. 2007/0079079 Al 4/2007 Lietal.
6.012.839 A 1/2000 Nguyen et al. 2007/0156963 Al 7/2007 Chen et al.
6.032.253 A 2/2000 Cashman et al. 2007/0165549 Al 7/2007 Surek et al.
6.038.570 A 3/2000 Hitz et al. 2007/0174411 Al 7/2007 Brokenshire et al.
6.065.027 A 5/2000 Cashman et al. 2008/0005357 A1 1/2008 Malkhi et al.
6.065.037 A 5/2000 Hitz et al. 2008/0104325 Al 5/2008 Narad et al.
6.092.215 A 7/2000 Hodges et al. 2008/0162594 Al 7/2008 Poston
6.138.125 A 10/2000 DeMoss 2008/0243951 Al 10/2008 Webman et al.
6.138.201 A 10/2000 Rebalski 2008/0243952 Al 10/2008 Webman et al.
6144999 A 11/2000 Khalidiet al. 2008/0288646 Al 11/2008 Hasha et al.
6.157.955 A 12/2000 Narad et al. 2009/0327818 Al 12/2009 Kogelnik
6.158017 A 12/2000 Han et al. 2010/0070730 A1 3/2010 Pop et al.
6172990 Bl 1/2001 Deb ctal, 2014/0109101 A1 4/2014 Radhakrishnan et al.
6,175,915 Bl 1/2001 Cashman et al.
6192491 Bl 22001 Cashman et al. OTHER PUBLICATIONS
6,205,487 Bl 3/2001 Cashman et al. _ _ _ o
6,200,087 Bl 3/2001 Cashman et al. Gibson, Garth A., et al., Coding Techniques for Handling Failures in
6,212,569 Bl 4/2001 Cashman et al. Large Disk Arrays, Technical Report UCB/CSD 88/477, Computer
6,223,300 Bl 4/2001 Gotoh Science Division, University of California, Jul., 1988.
g’%gg’égg g} 5/2001 Inoue Gibson, Garth A., et al., Failure Correction Techniques for Large
,282, 8/2001 Rezaul Islam et al.
6,356,999 Bl 3/2002 Cashman et al. Disk Arrays, In Proceedings Architectural Support for Programming
6,425,035 B2 7/2002 Hoese et al. Languages and Operating Systems, Boston, Apr. 1989, pp. 123-132.
6,434,711 Bl 8/2002 Takiyanagi Gibson, Garth A., et al., Strategic Directions in Storage I/O Issues in
6,438,678 Bl 8/2002 Cashman et al. Large-Scale Computing, ACM Computing Survey, 28(4):779-93,
6,442,711 Bl 8/2002 Sasamoto et al. Dec. 1996.
6,467,060 B1 10/2002 Malakapalli et al. Hitz, Dave et al., File System Design for an NFS File Server Appli-
6,502,205 B1 12/2002 Yanai et al. ance, Technical Report 3002, Rev. C395, presented Jan. 19, 1994, 23
6,519,733 Bl 2/2003 Har et al. pages.

US 9,158,579 B1
Page 3

(56) References Cited
OTHER PUBLICATIONS

Katz, Randy H. et al., Disk System Architectures for High Perfor-
mance Computing, Proceedings of the IEEE, vol. 77, No. 12, pp.
1842-1858, Dec. 1989.
Patterson, David A., et al., Introduction to Redundant Arrays of
Inexpensive Disks (RAID). In IEEE Spring 8 COMPCON, San
Francisco, IEEE Computer Society Press, Feb. 27-Mar. 3, 1989, pp.
112-117.
Patterson, D, et al., A Case for Redundant Arrays of Inexpensive
Disks (RAID), SIGMOND International Conference on Manage-
ment of Data, Chicago, IL, USA, Jun. 1-3, 1988, SIGMOND Record
(17):3:109-16 (Sep. 1988).
Patterson, D, et al., A Case for Redundant Arrays of Inexpensive
Disks (RAID), Technical Report, CSD-87-391, Computer Science
Division, Flectrical Engineering and Computer Sciences, University
of California at Berkeley (1987), 26 pages.
High Performance Voting for Data Encription Standard Engine Data
Integrity and Reliability, IBM Technical Disclosure Bulletin, Nov. 1,
1993 (19931101), vol. 36, Issue #11, pp. 189-192.
Gregory, T. Byrd, Producer-Consumer Communication in Distrib-
uted Shared Memory Multiprocessors, 1999.
Abdel-Shafi, Hazim, et al., “An Evaluation of Fine-Grain Producer-
Initiated Communication in Cache-Coherent Multiprocessors”,
IEEE Proceedings of the Third International Symposium on High
Performance Computer Architecture, Feb. 1997, San Antonio, TX, 8
ages.
gh%mg etal., “VCluster: athread-based Java middleware for SMP and
heterogeneous clusters with thread migration support”, Nov. 21,
2007, Wiley InterScience.

Salehi et al, “The performance impact of scheduling for cache affinity
in parallel network processing,” Issue date: Aug. 2-4, 1995, pp.
66-77.

Mills, David L., “Network Time Protocol (version 3) Specification,
Implementation and Analysis,” Network Working Group,
XP002935527, Mar. 1, 1992, pp. i-vii and 1-113.

Network Appliance, Inc., “Notification of Transmittal of the Interna-
tional Search Report and the Written Opinion of the International
Searching Authority, or the Declaration,” International Filing Date:
Mar. 19, 2008, International Application No. PCT/US2008/003554,
Date of Mailing: Aug. 26, 2008, pp. 1-14.

Network Appliance, Inc., “Notification of Transmittal of the Interna-
tional Search Report and the Written Opinion of the International
Searching Authority, or the Declaration,” International Filing Date:
Mar. 19, 2008, International Application No. PCT/US2008/003612,
Date of Mailing: Nov. 5, 2008, pp. 1-17.

Network Appliance, Inc., “Notification of Transmittal of the Interna-
tional Search Report and the Written Opinion of the International
Searching Authority, or the Declaration,” International Filing Date:
Mar. 20, 2008, International Application No. PCT/US2008/003692,
Date of Mailing: Nov. 5, 2008, pp. 1-17.

PCT Notification of Transmittal of the International Search Report
and the Written Opinion of the International Searching Authority, or
the Declaration, International Application No. PCT/US2008/
004766, International Filing Date: Apr. 14, 2008, Date of Mailing of
Document: May 12, 2009, 17 pages.

Isci, Canturk, et al., “An Analysis of Efficient Multi-Core Global
Power Management Policies: Maximizing Performance for a Given
Power Budget”, the 39" Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO °06), Dec. 1, 2006, 12 pages.
Oklobdzija, Vojin G., “The Computer Engineering Handbook”, CRC
Press, 2002, ISBN: 0849308852, 9780849308857, pp. 8-23-8-25.

* cited by examiner

US 9,158,579 B1

Sheet 1 of 6

Oct. 13, 2015

U.S. Patent

743 743
L

ASid MSia

Oif

I Old

W3LSAS 4
3OVHOLS

00}

00z
JONVINddv
ALRINO3S

ok
IN3MO

US 9,158,579 B1

Sheet 2 of 6

Oct. 13, 2015

U.S. Patent

05¢
advo
W3LSAS

€092
advo
AH3IN0D3Y

34
H3AVIA
QAvO

ore
I/

¢ Old

ge72 veZz
IHOD IHOD
072 .
(d39) B0ze
HOSSIDOMd HALIVAY
NOILdAMONI MHOMIIN
IOVHOLS

ciz
WILSAS
ONLLYY3dO

3J0vdsS
SS3HAAY

ecoc

(NdD) LINN
ONISSID0Hd
TVHINTD

US 9,158,579 B1

Sheet 3 of 6

Oct. 13, 2015

U.S. Patent

1X31L H3HJIo

¢ L w 98¢
dINS wlt. bos
HSS ﬂ) z9c

diiH

s1ov/syIsn- ¢
SNOISSINYTd- Ol
SATM ONZ-
0.8
80 DIINOD
— ogE
09
¢ ¥3IANIS
YIDYNYIN XO8 134008

SATH ON3 -

SNOISSIAYMIAC -

00% 3N3aNO

oge

Gee

<

—_ 007 AN3AND

0ve
000

oog

l\l\

I
A

HAAVT OLdAND

AAONL

>

B vivd

*

4

QYvO N3LSAS

oce

AXQCYHd v1va

US 9,158,579 B1

Sheet 4 of 6

Oct. 13, 2015

U.S. Patent

v Old

¥3LNIOd
HINNSNOD
h 4
ECTN Ko D50 g50% v5or
i do !|] do do do
'\
\ H¥3ALNIOd
oor H¥30NA0Hd

US 9,158,579 B1

G Old
H3LINIOd
H3IWNSNOO

A 4

Sheet 5 of 6

oo | W= T
snivis:|f snivis ||l snivis

Oct. 13, 2015

U.S. Patent

\ H3INIOd

00s H30NA0™d

U.S. Patent Oct. 13, 2015 Sheet 6 of 6 US 9,158,579 B1

600

RECEIVE OPERATION REQUEST

_— 610

615

LONG
RUNNING
OPERATION?

PLACE OPERATIONIN [~ 620 PLACE OPERATIONIN %%
LONG RUNNING NON-LONG RUNNING
OPERATION QUEUE OPERATION QUEUE
REMOVE OPERATION FRom |~ 8%° REMOVE OPERATION FRom 697
QUEUE AND PROCESS QUEUE AND PROCESS
OPERATION OPERATION
PLACE STATUS OF — 630 PLACE STATUS OF |— 655
OPERATION IN LONG OPERATION IN NON-LONG
RUNNING STATUS QUEUE RUNNING STATUS QUEUE
REMOVE STATUSAND | 695 REMOVE STATUSAND p— 660
REPORT TO INITIATOR REPORT TO INITIATOR

640

Comrere 3
FIG. 6

US 9,158,579 B1

1

SYSTEM HAVING OPERATION QUEUES
CORRESPONDING TO OPERATION
EXECUTION TIME

FIELD OF THE INVENTION

The present invention relates to computer processors, and
more specifically, to utilizing a plurality of prioritized queues
on computer processors.

BACKGROUND OF THE INVENTION

A storage system is a computer that provides storage ser-
vice relating to the organization of information on writable
persistent storage devices, such as memories, tapes, disks or
solid state devices, e.g., flash memory, etc. The storage sys-
tem is commonly deployed within a storage area network
(SAN) or a network attached storage (NAS) environment.
When used within a NAS environment, the storage system
may be embodied as a file server including an operating
system that implements a file system to logically organize the
information as a hierarchical structure of data containers,
such as files on, e.g., the disks. Each “on-disk” file may be
implemented as a set of data structures, e.g., disk blocks,
configured to store information, such as the actual data (i.e.,
file data) for the file.

A network environment may be provided wherein infor-
mation (data) is stored in secure storage served by one or
more storage systems coupled to one or more security appli-
ances. Each security appliance is configured to transform
unencrypted data (cleartext) generated by clients (or initia-
tors) into encrypted data (ciphertext) destined for secure stor-
age or “cryptainers” on the storage system (or target). As used
herein, a cryptainer is a piece of storage on a storage device,
such as a disk, in which the encrypted data is stored. In the
context of a SAN environment, a cryptainer can be, e.g., a
disk, a region on the disk or several regions on one or more
disks that, in the context of a SAN protocol, is accessible as a
logical unit (lun). In the context of a NAS environment, the
cryptainer may be a collection of files on one or more disks.
Specifically, in the context of the CIFS protocol, the cryp-
tainer may be a share, while in the context of the NFS proto-
col, the cryptainer may be a mount point. In a tape environ-
ment, the cryptainer may be a tape containing a plurality of
tape blocks.

Each cryptainer is associated with its own encryption key,
e.g., a cryptainer key, which is used by the security appliance
to encrypt and decrypt the data stored on the cryptainer. An
encryption key is a code or number which, when taken
together with an encryption algorithm, defines a unique trans-
formation used to encrypt or decrypt data. Data remains
encrypted while stored in a cryptainer until requested by an
authorized client. At that time, the security appliance retrieves
the encrypted data from the cryptainer, decrypts it and for-
wards the unencrypted data to the client.

One noted disadvantage that may arise during use of a
security appliance is that certain operations may be long
running and may generate a backlog within a processor of the
security appliance. For example, execution of performing
compression/decompression operations on, e.g., a tape data
stream, by the processor may require significant amounts of
time. Conversely, execution of single block encryption/de-
cryption operations for data access requests directed to a disk
drive may proceed rapidly. However, should a long-running
tape compression/decompression operation be loaded onto
an operations queue associated with the processor before a
block-based encryption/decryption operation, execution of

10

30

35

40

45

55

2

the encryption/decryption operation by the processor may
have to wait until such time as the long-running operation
completes. This may substantially lower overall throughput
and reduce system performance.

SUMMARY OF THE INVENTION

The disadvantages of the prior art are overcome by provid-
ing a system and method for utilizing prioritized queues on a
computer, such as a security appliance or a second storage
system. [llustratively, a plurality of queues is organized on the
computer to enable long-running operations to be loaded on
(directed to) a long running operation queue, while faster,
“short-running” operations are directed to a short running
operation queue. The queues may be associated with one or
more processors (e.g., processor cores) of the computer to
thereby enable improved throughput. When an operation
request (e.g., a tape compression operation, an encryption
operation, a disk compression operation, etc.) is received at a
processor intake of the computer, a determination is made
whether the operation contained within the received request is
a long-running operation, e.g., a tape compression operation.
If so, the operation is placed in the long-running operation
queue. The processor core that is associated with the long-
running operation queue thereafter removes the operation
from the queue and executes the operation. The status of the
operation, e.g., operation complete, an error code, etc., is then
loaded onto an outgoing long-running operation status queue.
The status may subsequently be removed and reported to an
initiator of the long-running operation.

Similarly, if a determination is made that the received
operation is not a long-running operation, e.g., a compression
operation, the operation is placed in a non-long running
operation queue. The processor core associated with the
short-running operation is queue then removes the operation
from the queue and processes the operation. Status informa-
tion relating to that operation is then loaded onto a short-
running status queue. The status may be subsequently
removed from the queue and reported to the initiator of the
operation. By utilizing a plurality of queues directed to dif-
ferent priorities of operation, overall system throughput may
be increased by, among other things, reducing the number of
short-running operations that are delayed.

BRIEF DESCRIPTION OF THE DRAWINGS

The above and further advantages of the invention may be
better understood by referring to the following description in
conjunction with the accompanying drawings in which like
reference numerals indicate identical or functionally similar
elements:

FIG. 1 is a schematic block diagram of an environment
including a security appliance in accordance with an illustra-
tive embodiment of the present invention;

FIG. 2 is a schematic block diagram of a security appliance
in accordance with an illustrative embodiment of the present
invention semi;

FIG. 3 is a schematic block diagram illustrating an arrange-
ment of software processes and modules executing on a secu-
rity appliance in accordance with an illustrative embodiment
of the present invention;

FIG. 4 is a schematic block diagram of an illustrative
operation queue in accordance with an illustrative embodi-
ment of the present invention;

FIG. 5 is a schematic block diagram of an exemplary status
queue in accordance with an illustrative embodiment of the
present invention; and

US 9,158,579 B1

3

FIG. 6 is a flow chart detailing the steps of a procedure for
utilizing prioritized queues in accordance with an illustrative
embodiment of the present invention.

DETAILED DESCRIPTION OF AN
ILLUSTRATIVE EMBODIMENT

The present invention provides a system and method for
prioritized queues. Illustratively, a plurality of queues are
organized to enable long-running operations to be directed to
a long running queue operation, while faster operations are
directed to a non-long running operation queue. Queues may
be associated with one or more of a plurality of processor
cores to therefore enable improved throughput operations.
When an operation request is received, a determination is
made whether it is a long-running operation, e.g., a tape
compression operation. If so, the operation is placed in a
long-running operation queue. When the processor core that
is executing long-running operations is ready for the next
operation, it removes an operation from the long-running
operation queue and processes the operation. The status of the
operation is then placed in an outgoing long-running opera-
tion status queue. The status may then be removed and
reported to the initiator of the long-running operation.

Similarly, if a determination is made that the received
operation is not a long-running operation, e.g., a compression
operation, the operation is placed in a non-long running
operation queue. The processor core executing non-long-
running operations then removes the operation from the
queue and processes the operation. Status information relat-
ing to the operation is then placed in a non-long-running
status queue. The status may then be removed from the queue
and reported back to the initiator of the operation. By utilizing
a plurality of queues directed to different priorities of opera-
tion, overall system throughput may be increased and the
number of non-long-running operations that are delayed may
be reduced.

A. Security Appliance Environment

FIG. 1 is a schematic block diagram of an exemplary envi-
ronment 100 including a multi-protocol security appliance
200 that may be advantageously used with an illustrative
embodiment of the present invention. The security appliance
200 is illustratively coupled between one or more clients 102
and one or more storage systems 110 although, in alternative
embodiments, the security appliance (or its functionality)
may be embodied on/in the storage system to thereby provide
a secure storage system. The security appliance 200, which is
configured to act as an encryption proxy, intercepts a data
access request issued by client 102 and destined for the stor-
age system 110, wherein the data access request may be aread
request to retrieve certain data stored on storage devices, such
as disks 120, coupled to the storage system 110 or a write
request to store data on the disks. In the case of a write request,
the security appliance 200 intercepts the request, encrypts the
data associated with the request and forwards the encrypted
data to the storage system 110 for storage at a specified
location (address) on disk 120. In the case of a read request,
the security appliance intercepts the request and forwards it
onto the storage system, which returns the requested data to
the appliance in encrypted form. The security appliance 200
then decrypts the encrypted data and returns the decrypted
data to the client 102.

In the illustrative embodiment, the security appliance
employs a conventional encryption algorithm, e.g., the
Advanced Encryption Standard (AES) or other appropriate
algorithms, to transform unencrypted data (cleartext) gener-
ated by the clients 102 into encrypted data (ciphertext)

10

15

20

25

30

35

40

45

55

60

65

4

intended for secure storage, i.e., one or more cryptainers, on
the storage system 110. To that end, the security appliance
illustratively uses a high-quality, software or hardware-based
pseudo random number generation technique to generate
encryption keys. The encryption and decryption operations
are performed using these encryptions keys, such as a cryp-
tainer key associated with each cryptainer. As described
herein, the security appliance 200 uses an appropriate cryp-
tainer key to encrypt or decrypt portions of data stored in a
particular cryptainer. In addition to performing encryption
and decryption operations, the security appliance 200 also
performs access control, authentication, virtualization, and
secure-logging operations.

Tustratively, the clients 102 may comprise application
service providers, virtual tape systems, etc. Thus, in accor-
dance with an illustrative embodiment of the present inven-
tion, clients 102 may send a plurality of types of operations to
the security appliance 200. For example, a client may send
one or more block-based encryption/decryption operations
directed to a logical unit number (lun) or may transmit one or
more compression/decompression operations directed to a
virtual tape stream.

B. Security Appliance

FIG. 2 is a schematic block diagram of the multi-protocol
security appliance 200 that may be advantageously used with
the present invention. As used herein, a security appliance
denotes a computer having features such as simplicity of
security service management for users (system administra-
tors) and clients of network attached storage (NAS) and stor-
age area network (SAN) deployments. The security appliance
comprises one or more processors, e.g., central processing
units (CPU 220q,5), a memory 210, one or more network
adapters 220q,b, a storage encryption processor (SEP 270)
and a card reader 230 interconnected by a system bus 240,
such as a conventional Peripheral Component Interconnect
(PCI) bus. The SEP 270 is configured to perform all encryp-
tion and decryption operations for the security appliance in a
secure manner; for example, the SEP is configured to protect
plaintext encryption keys from system software executing on
each CPU 202. Accordingly, the SEP is illustratively embod-
ied as a FIPS 140-2 level-3 certified module.

In accordance with the illustrative embodiment of the
present invention, the SEP 270 includes a plurality of proces-
sorcores 275 A, B. It should be noted that two cores are shown
for illustrative purposes only. In accordance with alternative
embodiments of the present invention, the SEP 270 may have
any number of the processor cores including, for example, a
single processor core. As such, the depiction of the SEP 270
having two processor cores 275 A, B should be taken as
exemplary only. Furthermore, while one SEP 270 is shown in
FIG. 2, the principles of the present invention may be utilized
in systems having any number of SEPs. As such, the descrip-
tion of a single SEP 270 should be taken as exemplary only.

Since the SEP 270 protects encryption keys from being
“touched” (processed) by the system software executing on
the CPU 202, a mechanism is needed to load keys into and
retrieve keys from the SEP. To that end, the card reader 230
provides an interface between a “smart” system card 250 and
the SEP 270 for purposes of exchanging encryption keys.
Tlustratively, the system card is a FIPS 140-2 level-3 certified
card that is configured with customized software code. The
security appliance (and card reader 230) are further config-
ured to support additional smart cards referred to as recovery
cards 260a,b. The security appliance illustratively supports
up to 40 recovery cards with a default value of, e.g., 5 recov-
ery cards, although any number of cards can be supported
based on the particular security policy.

US 9,158,579 B1

5

Operationally, encryption keys are exchanged between the
SEP 270 and system card 250, where they are “secret shared”
(cryptographically assigned) to the recovery cards 260 as
recovery keys, as described herein. These recovery keys can
thereafter be applied (via the recovery cards) to the security
appliance 200 to enable restoration of other encryption keys
(such as cryptainer keys). A quorum setting for the recovery
cards 260 may be provided such that the recovery keys stored
on the recovery cards are backed up in a threshold scheme
whereby, e.g., any 2 of the 5 default cards can recover the
keys.

The network adapters 220 couple the security appliance
200 between one or more clients 102 and one or more storage
systems 110 over point-to-point links, wide area networks
and virtual private networks implemented over a public net-
work (Internet) or shared local area networks. In a SAN
environment configured to support various Small Computer
Systems Interface (SCSI)-based data access protocols,
including SCSI encapsulated over TCP (iSCSI) and SCSI
encapsulated over FC (FCP), the network adapters 220 may
comprise host bus adapters (HBAs) having the mechanical,
electrical and signaling circuitry needed to connect the appli-
ance 200 to, e.g., a FC network. In a NAS environment con-
figured to support, e.g., the conventional Common Internet
File System (CIFS) and the Network File System (NFS) data
access protocols, the network adapters 220 may comprise
network interface cards (NICs) having the mechanical, elec-
trical and signaling circuitry needed to connect the appliance
1o, e.g., an Ethernet network.

The memory 210 illustratively comprises storage locations
that are addressable by the processors and adapters for storing
software programs and data structures associated with the
present invention. The processor and adapters may, in turn,
comprise processing elements and/or logic circuitry config-
ured to execute the software programs and manipulate the
data structures. An operating system 212, portions of which is
typically resident in memory and executed by the processing
elements, functionally organizes the appliance 200 by, inter
alia, invoking security operations in support of software pro-
cesses and/or modules implemented by the appliance. It will
be apparent to those skilled in the art that is other processing
and memory means, including various computer readable
media, may be used for storing and executing program
instructions pertaining to the invention described herein.

The operating system 212 illustratively organizes the
memory 210 into an address space arrangement available to
the software processes and modules executing on the proces-
sors. FIG. 3 is a schematic diagram illustrating an arrange-
ment 300 of software processes and modules executing on the
security appliance 200 in accordance with the present inven-
tion. In the illustrative embodiment, the operating system
software is a customized version of a Unix type operating
system, although other operating systems may be utilized in
alternate embodiments of the present invention.

For both NAS and SAN environments, data is received at a
proxy 320 of the security appliance. The proxy 320 is a kernel
module embodied as, e.g., the network protocol stack config-
ured to interpret the protocol over which data is received and
to enforce certain access control rules based on one or more
policies. Each policy is served by a box manager 360 that is
illustratively embodied as a database application process con-
figured to manage a configuration repository or database
(Config DB 370) that stores permissions, access control lists
(ACLs), system-wide settings and encrypted keys. A socket
server 380 provides interfaces to the box manager 360,
including (i) an HTTP web interface 382 embodied as, e.g., a
graphical user interface (GUI) adapted for web-based admin-

5

10

15

20

25

30

35

40

45

50

55

60

65

6

istration, (ii) a SSH interface 384 for command line interface
(CLI) command administration, and (iii) an SNMP interface
386 for remote management and monitoring.

Specifically, the box manager 360 supplies the permissions
and encrypted keys to the proxy 320, which intercepts data
access requests and identifies the sources (clients 102) of
those requests, as well as the types of requests and the storage
targets (cryptainers) of those requests. The proxy also que-
ries, using, e.g., an interprocess communication (IPC) tech-
nique, the box manager for permissions associated with each
client and, in response, the box manager 360 supplies the
appropriate permissions and encrypted key (e.g., a cryptainer
key). The proxy 320 then bundles the data together with the
encrypted key and forwards that information to a crypto pro-
cess (layer) 330 that functions as a “wrapper” for the SEP 270.
As noted, the SEP resides on an interface card, which is
hereinafter referred to a data crypto card (DCC 340).

Tustratively the DCC 340 cooperates with the crypto layer
330 to implement a plurality of prioritize queues, such as
operation queues 400 and status queues 500 in accordance
with an illustrative embodiment of the present invention.
Each operation queue 400 is utilized by the crypto layer 330
to access the DCC 340 by, for example, supplying starting and
ending points of data as well as offsets into the data along with
the encryption keys used to encrypt data. In accordance with
the illustrative embodiment of the present invention, the DCC
340 removes operations from the queue 400 and processes
them before placing status indicators in status queue 500. The
crypto layer 330 may retrieve status information, e.g., opera-
tion complete, error codes, etc., from queue 500 and return the
status information to the appropriate initiator of the operation.
In an illustrative embodiment, operation requests are received
by the crypto layer 330 and enqueued in an operations queue
400 before processing by one of the cores of'the SEP 270. The
crypto layer or, in alternative embodiments, the DCC 340
determines whether the received operation request is a long
running operation. If the operation contained in the received
request is a long running operation, e.g., a compression
operation, the operation is enqueued in a long running opera-
tion queue 400. Otherwise, the operation is enqueued in a
short running operation queue 400. In accordance with alter-
native embodiments, there may be a plurality of long and
short running operation queues (and associated status queues
500). Each of the queues may be associated with one or more
processor cores in a predefined manner, established by, e.g.,
the DCC 340, to enable optimized processing of operations.
In alternative embodiments, the association of individual
queues with specific cores may dynamically change depend-
ing on the type of operation mix being processed. It should be
noted that in alternative embodiments, queues 400, 500 may
be implemented in modules other than DCC 340, e.g. queues
400, 500 may be implemented in crypto layer 330. As such,
the description of queues being implemented by DCC 340
should be taken as exemplary only. Furthermore, the method
of associating processor cores with queues may vary as will
be appreciated by one skilled in the art. Thus, in the illustra-
tive embodiment, the decision as to which processor core 275
an operation is directed is made by the software executing on
processor 202. However, in alternative embodiments, this
decision may be performed by other modules. As such, this
description should be taken as exemplary only.

The crypto layer 330 interacts with the DCC 340 by access-
ing (reading and writing) registers on the DCC and, to that
end, functions as a PCI interface. The DCC 340 includes one
or more previously loaded keys used to decrypt the supplied
encrypted keys; upon decrypting an encrypted key, the DCC
uses the decrypted key to encrypt the supplied data. Upon

US 9,158,579 B1

7

completion of encryption of the data, the DCC returns the
encrypted data as ciphertext to the proxy 320, which forwards
the encrypted data to the storage system 110.

Notably, the security appliance 200 “virtualizes” storage
such that, to a client 102, the appliance appears as a storage
system 110 whereas, from the perspective of the storage
system, the security appliance appears as a client. Such vir-
tualization requires that security appliance manipulate net-
work addresses, e.g., [P addresses, with respect to data access
requests and responses. [llustratively, certain of the customi-
zations to the network protocol stack of the proxy 320 involve
virtualization optimizations provided by the appliance. For
example, the security appliance 200 manipulates (changes)
the source and destination IP addresses of the data access
requests and responses.

C. Prioritized Queues

The present invention provides a system and method for
prioritized queues. Illustratively, a plurality of queues are
organized to enable long-running operations to be directed to
a long running queue operation, while faster operations are
directed to a non-long running operation queue. Queues may
be associated with one or more of a plurality of processor
cores to therefore enable improved throughput operations.
When an operation request is received, a determination is
made whether it is a long-running operation, e.g., a tape
compression operation. If so, the operation is placed in a
long-running operation queue. When the processor core that
is executing long-running operations is ready for the next
operation, it removes an operation from the long-running
operation queue and processes the operation. The status of the
operation is then placed in an outgoing long-running opera-
tion status queue. The status may then be removed and
reported to the is initiator of the long-running operation.

Similarly, if a determination is made that the received
operation is not a long-running operation, e.g., a compression
operation, the operation is placed in a non-long running
operation queue. The processor core executing non-long-
running operations then removes the operation from the
queue and processes the operation. Status information relat-
ing to the operation is then placed in a non-long-running
status queue. The status may then be removed from the queue
and reported back to the initiator of the operation. By utilizing
a plurality of queues directed to different priorities of opera-
tion, overall system throughput may be increased and the
number of non-long-running operations that are delayed may
be reduced.

FIG. 41s a schematic block diagram of an exemplary opera-
tion queue 400 in accordance with an illustrative embodiment
of the present invention. The queue 400 is illustratively uti-
lized by the crypto layer 330 to enqueue operations for pro-
cessing by the SEP (or one or more cores) therein. Illustra-
tively, a plurality of operation queues 400 may be utilized in
accordance with the teachings of the present invention. Two
pointers are illustratively maintained for each queue, e.g., a
producer pointer and a consumer pointer. The producer
pointer signifies the location where the next operation is to be
enqueued, while the consumer pointer signifies the location
of'the operation that is to be next removed from the queue for
processing. Thus, in the example shown in FIG. 4, four opera-
tions are enqueued, e.g., operations 405 A-D. The consumer
pointer signifies that the next operation to be removed from
the queue for processing is operation 405 A. Similarly, the
producer pointer indicates that the next operation to be
enqueued will be inserted as operation 405E. It should be
noted that illustratively the queue 400 is a “wrap around”
queue so that when the producer and/or consumer pointer
reaches the last the entry of the queue, it utilizes the first entry

10

15

20

25

30

40

45

50

55

60

65

8

as a next entry. It should be noted that in alternative embodi-
ments other implementations of an operations queue 400 may
be utilized. As such, the description herein should be taken as
exemplary only.

FIG. 5 is a schematic block diagram of an exemplary status
queue 500 in accordance with an illustrative embodiment of
the present invention. Similar to the operations queue 400, the
status queue includes a producer pointer and a consumer
pointer. In relation to the status queue 500, the producer
pointer signifies the next the location where the next status
information is to be inserted by the data crypto card 340. The
consumer pointer signifies the next status entry that is to be
read and returned to the initiator in accordance with an illus-
trative embodiment of the present invention. As used herein,
an initiator is a client or process that initiates an operation
request and to which status information is directed. Thus, in
the example shown in FIG. 5, there are two status entries
505A, B enqueued within status queue 500. The consumer
pointer points to status entry 505A, which will be the next
status entry returned to an initiator. The producer entry points
to a location where status entry 505C will be enqueued once
the next operation has been completed.

FIG. 6 is a flow chart detailing the steps of a procedure for
utilizing prioritized queues in accordance with an illustrative
embodiment of the present invention. The procedure 600
begins in step 605 and continues to step 610 where an opera-
tion request is received by, e.g., the crypto layer 330 of a
computer, such as security appliance 210. A determination is
made in step 615 whether the received operation request
contains a long-running operation. [llustratively, this deter-
mination is made by the crypto layer 330; however, in alter-
native embodiments, this determination may be made by
other modules of the computer.

If the operation received is a long-running operation, the
procedure continues to step 620 where the received operation
is placed in a long-running operation queue. At a later point in
time, the operation is removed from the long-running opera-
tion queue and processed by one or more cores of the SEP in
step 625. The status of the operation is then placed on a
long-running status queue in step 630. The status is then
removed from the long-running status queue and reported to
the initiator in step 635. The procedure 600 then completes in
step 640.

However, if in step 615 it is determined that the operation
is not a long-running operation, then the procedure branches
to step 645 where the received operation is placed on a non-
long-running (i.e., short-running) operation queue. A SEP
core removes the operation from the queue and processes the
operation in step 650. The status of the processed operation is
then placed on a non-long running status queue in step 655.
The status is then removed from the queue and reported to the
initiator in step 660 before the procedure completes in step
640.

To again summarize, the present invention enables a plu-
rality of operation queues to be configured in a defined system
arrangement with one or more processor cores. Upon receiv-
ing an operation request, the system enqueues the operation
onto one of the queues based upon one or more characteristics
of the operation. Illustratively, the characteristic is whether
the operation is a long running operation. However, it should
be noted that in alternative embodiments, additional and/or
differing characteristics may be utilized. Once enqueued, the
operation is subsequently processed by one of the processor
cores that is illustratively configured to process (execute)
operations having a certain characteristic. In alternative
embodiments, the association of processor cores and queues

US 9,158,579 B1

9

may be dynamically modified depending on, e.g., the opera-
tion types and quantities that are being received by the sys-
tem.

The foregoing description has been directed to specific
embodiments of this invention. It will be apparent; however,
that other variations and modifications may be made to the
described embodiments, with the attainment of some or all of
their advantages. For instance, it is expressly contemplated
that the procedures, processes, layers and/or modules

described herein may be implemented in hardware, software, 10

embodied as a computer-readable medium having executable
program instructions, firmware, or a combination thereof.
Accordingly this description is to be taken only by way of
example and not to otherwise limit the scope of the invention.
Therefore, it is the object of the appended claims to cover all
such variations and modifications as come within the true
spirit and scope of the invention.

What is claimed is:
1. A method for processing operations using a plurality of
queues of a computer, the method comprising:
receiving, at a processor intake of the computer, a request;
determining, when the request is received at the processor
intake, whether an operation within the request is
directed to a long running operation based on an amount
of time required by a processor to execute the operation
within the request;
placing, in response to determining that the operation is
directed to the long running operation, the operation on
a long running operation queue from the plurality of
queues, wherein a first processing core of the processor
is associated with the long running operation queue; and
placing, in response to determining that the operation is not
directed to the long running operation, the operation on
anon-long running operation queue from the plurality of
queues, wherein a second processing core of the proces-
sor is associated with the non-long running operation
queue.
2. The method of claim 1 further comprising:
removing the operation from the long running operation
queue by the first processing core;
processing the operation by the first processing core; and
placing, on a long running operation status queue, a status
indicator of the processed operation.
3. The method of claim 1 further comprising:
removing the operation from the non-long running opera-
tion queue by the second processing core;
processing the operation by the second processing core;
and
placing, on a non-long running operation status queue, a
status indicator of the processed operation.
4. The method of claim 1 wherein the operation comprises
a compression operation.
5. The method of claim 1 wherein the operation comprises
an encryption operation.
6. A system for processing operations using a plurality of
queues of a computer, the system comprising:
means for receiving, at a processor intake, a request;
means for determining, when the request is received at the
processor intake, whether an operation within the
request is directed to a long running operation based on
an amount of time required by a processor to execute the
operation;
means for placing, in response to determining that the
operation is directed to the long running operation, the
operation on a long running operation queue associated
with a first processing core; and

10

means for placing, in response to determining that the
operation is not directed to the long running operation,
the operation on a non-long running operation queue
associated with a second processing core.
5 7. A non-transitory computer readable medium containing
executable program instructions executed by a processor,
comprising:
program instructions that receive, at a processor intake of a
computer, a request;
program instructions that determine, when the request is
received at the processor intake, whether an operation
within the request is directed to a long running operation
based on an amount of time required to execute the
operation;

. program instructions that place, in response to determining
that the operation is directed to the long running opera-
tion, the operation on a long running operation queue
associated with a first processing core; and

20 program instructions that place, in response to determining

that the operation is not directed to the long running
operation, the operation on a non-long running opera-
tion queue associated with a second processing core.
8. A system for processing operation requests, the system
25 comprising:
a processor having one or more processor cores;
one or more long running operation queues operatively
interconnected with the processor, the one or more long
running operation queues configured to store a first set of
operation requests to be processed by a first set of the one
or more of the processor cores;
one or more non-long running operation queues opera-
tively interconnected with the processor, the one or more
non-long running operation queues configured to store a
second set of operation requests to be processed by a
second set of one or more of the processor cores; and

amemory coupled to the processor and configured to store
software executed by the processor, the software when
executed operable to:

receive a request,

determine, when the request is received at a processor

intake, whether an operation within the request is
directed to a long running operation based on an amount
of time required by the processor to execute the opera-
tion, and place, in response to determining that the
operation is directed to the long running operation, the
operation in one of the long running operation queues.

9. The system of claim 8 wherein the software is further
configured to:

determine, when the request is received at the processor

intake, whether the operation is directed to a non-long
running operation based on the amount of time required
by the processor to execute the operation, and

place, in response to determining that the operation is

directed to the non-long running operation, the opera-
tion in one of the non-long running operation queues.

10. The system of claim 8 wherein the operation comprises
a compression operation.

11. The system of claim 8 wherein the operation comprises
an encryption operation.

12. The system of claim 8 wherein the first set of one or
more processor cores is configured to remove a queued opera-
tion from the long running operation queue and process the
removed queued operation.

13. The system of claim 12 wherein the first set of one or
more processor cores is further configured to place a status
indicator in a long running operation status queue.

30

35

40

45

50

60

65

US 9,158,579 B1

11

14. The system of claim 8 wherein the second set of one or
more processor cores is configured to remove a queued opera-
tion from the non-long running operation queue and process
the removed queued operation.

15. The system of claim 14 wherein the second set of one or
more processor cores is further configured to place a status
indicator in a non-long running operation status queue.

16. A method for processing operations using a plurality of
queues of a computer having a processor, the method com-
prising:

generating, by a module of the computer, an operation

request;

forwarding the generated operation request to a storage

encryption processor for execution;

determining, when the operation request is received at the

storage encryption processor, whether the generated
operation request is directed to a long running operation
based on an amount of time required by the processor to
execute the operation;

placing, in response to determining that the operation

request received at the storage encryption processor is

10

15

12

directed to the long running operation, the operation on
a long running operation queue selected from the plu-
rality of queues, wherein the long running operation
queue is associated with a first core of the storage
encryption processor; and

placing, in response to determining that the operation
request received at the storage encryption processor is
not directed to the long running operation, the operation
request on a non-long running operation queue selected
from the plurality of queues, wherein the non-long run-
ning operation queue is associated with a second core of
the storage encryption processor.

17. The method of claim 16 further comprising:

removing the operation from the long running operation
queue by the first core;

processing the operation by the first core of the storage
encryption processor; and

placing, on a long running operation status queue, an indi-
cator that the operation was processed.

#* #* #* #* #*

